

Part 1

- How antibiotics work
- How resistance occurs
- How to choose and antibiotic
- Empirical vs. targeted therapy
- Broad vs. narrow spectrum
- The implications of prescribing an antibiotic

Aims & Objectives

- To understand how to review an antibiotic on a daily basis
- To know when it is safe to switch from IV to oral antibiotics
- To know how to investigate the reasons for a failing antibiotic regimen
- To have a working knowledge of therapeutic drug monitoring
- To understand the difficulties of prescribing in particular patient groups: renal failure & obesity

www.microbiologynutsandbolts.co.uk

www.microbiologynutsandbolts.co.uk

• Table of bacterial causes of infection

www.microbiologynutsandbolts.co.uk

www.microbiologynutsandbolts.co.uk

- Table of antibiotic spectrum of activity
- Table of antibiotic tissue penetration

Tissu	le penetration
	Table of Activity Table Strategies
	www.microbiologynutsandbolts.co.uk

How to review an antibiotic?

- Is the patient getting better?
- Can the antibiotic be converted from IV to oral?
- Can the antibiotic be narrowed down to a specific treatment?
- Are antibiotic levels required?
- Is the patients renal and liver function stable?
- Is the patient experiencing side effects?
- Have any other drugs been started that might interfere with the antibiotics?

www.microbiologynutsandbolts.co.uk

an infection that ne need for IV nere is no oral

6

· Can the antibiotics be stopped?

How to review an antibiotic?

- Is the patient getting better?
- Can the antibiotic be narrowed down to a specific treatment?
- Are antibiotic levels required?
- Is the patients renal and liver function stable?
- Is the patient experiencing side effects?
- Have any other drugs been started that might interfere with the antibiotics?
- Can the antibiotics be stopped?

www.microbiologynutsandbolts.co.uk

6

i Chi

When is an or	al switch safe?
If YES to ALL consider changing to oral	If YES to ANY continue IV
Is the patient able to swallow and tolerate oral fluids?	Is the patient's swallow unsafe?
Is the patient's temperature settling and <38°C for 24-48 hours?	Does the patient have continuing sepsis?
Has the patient's heart rate been <100 bpm for 12 hours?	Does the patient have an infection th specifically indicates the need for IV
Is the patient's peripheral white blood cell count 4-12 x10 ⁹ /L?	antibiotics, because there is no oral treatment?
Is patient's blood pressure stable?	Meningitis
Is the patient's respiratory rate <20bpm?	Infective endocarditis Encephalitis Octoomyolitic
Is the patient's CRP falling?	Eebrile neutropaenia
Are oral antibiotic formulations available?	

www.microbiologynutsandbolts.co.uk

How to review an antibiotic?

- Is the patient getting better?
- Can the antibiotic be converted from IV to oral?
- Can the antibiotic be narrowed down to a specific treatment?

- Is the patients renal and liver function stable?
- Is the patient experiencing side effects?
- Have any other drugs been started that might interfere with the antibiotics?
- Can the antibiotics be stopped?

Therapeutic Drug Monitoring

· Required for:

- Aminoglycosides e.g. Gentamicin, Amikacin, Tobramycin
- Chloramphenicol
- · Peak and trough levels
- Peak 1 hour post doseTrough immediately pre dose

How to review an antibiotic?

- Is the patient getting better?
- Can the antibiotic be converted from IV to oral?
- Can the antibiotic be narrowed down to a specific treatment?
- Are antibiotic levels required?
- Is the patient experiencing side effects?
- Have any other drugs been started that might interfere with the antibiotics?

www.microbiologynutsandbolts.co.uk

- Can the antibiotics be stopped?

Antibiotic dosing in renal failure Many antibiotics require dose reduction in renal failure

- Failure
 eGFR is not an accurate predictor of renal function
 Use Cockcroft Gault equation
 Actual body weight or Ideal Body Weight (IBW) if weight > 20% above IBW
 Also use IBW for patients
- Also use IBW for patients with oedema & ascites

Moderate to sev I = <u>1.23 x (140 - age in years) x weight in kg</u>³ Serum creatinine (umol'L) ile: CrCl = <u>1.04 x (140 – age in years) x weight in kg</u>[×] Serum creatinine (μmol/L Fem S

(da

Н	low	might	weight	effect	GFR?
		i ingi it		011000	<u> </u>

Weight (kg)	eGFR	Calculated GFR	Variance
45	63	33	-30
50	63	37	-26
55	63	40	-23
60	63	44	-19
65	63	47	-16
70	63	51	-12
75	63	55	-8
80	63	59	-4
	ww	w.microbiologynutsa	ndbolts.co.uk

How might weight effect GFR?

Weight (kg)	eGFR	Calculated GFR	Variance
45	63	33	-30
50	63	37	-26
55	63	40	-23
60			-19
65	63	47	-16
70	63	51	-12
75	63	55	-8
80	63	59	-4
	w	vw.microbiologynutsa	ndbolts.co.uk

How to review an antibiotic?

- Is the patient getting better?
- Can the antibiotic be narrowed down to a specific treatment?
- Are antibiotic levels required?
- · Is the patients renal and liver function stable?
- Have any other drugs been started that might interfere with the antibiotics?
- Can the antibiotics be stopped?

www.microbiologynutsandbolts.co.uk

Common side effects

Subjective

- Flushing

- Numbness & tingling
- Objective

 - Hyperkalaemia Cholestasis

- Thrombocytopaenia– Prolonged QT interval

www.microbiologynutsandbolts.co.uk

How to review an antibiotic?

- Is the patient getting better?
- Can the antibiotic be converted from IV to oral?
- Can the antibiotic be narrowed down to a specific treatment?
- Are antibiotic levels required?
- Is the patients renal and liver function stable?
- Is the patient experiencing side effects?

www.microbiologynutsandbolts.co.uk

· Can the antibiotics be stopped?

Common drug interactions

Drug	Antibiotic (s)	Interaction
Statins e.g. Simvastatin	Macrolides & Rifampicin	Altered levels
	Macrolides, Daptomycin, Fusidic acid & Azole antifungals	Myopathy
ACE Inhibitors e.g. Ramipril	Rifampicin	Reduced levels
	Trimethoprim	Hyperkalaemia
Diuretics e.g. Furosemide	Aminoglycosides, Glycopeptides & Polymyxins	Ototoxicity
	Trimethoprim	Hyperkalaemia
PPIs e.g. Omeprazole	Macrolides & Azole antifungals	Altered levels
Immunomodulators e.g. Methotrexate	Ciprofloxacin, Tetracyclines & Penicillins	Increased levels
	Trimethoprim & Antimalarials	Bone marrow toxicity

How to review an antibiotic?

- Is the patient getting better?
- Can the antibiotic be converted from IV to oral?
- Can the antibiotic be narrowed down to a specific treatment?
- Are antibiotic levels required?
- Is the patients renal and liver function stable?
- Is the patient experiencing side effects?
- Have any other drugs been started that might interfere with the antibiotics?

www.microbiologynutsandbolts.co.uk

the antibiotics be stopped

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Condition	Duration of treatment
neumonia & exacerbation of CC	PD 7 days
Simple UTI	
yelonephritis	
Cellulitis	
Septic arthritis & osteomyelitis	
Clostridium difficile	
Cholecystitis, cholangitis & perito	pnitis
epsis & meningitis	

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Pneumonia & exacerbation of COPD Simple UTI	7 days 3 days women
Simple UTI	3 days women
	7 days men
Pyelonephritis	
Cellulitis	
Septic arthritis & osteomyelitis	
Clostridium difficile	
Cholecystitis, cholangitis & peritonitis	
Sepsis & meningit <mark>is</mark>	

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Pneumonia & exacerbation of COPD	7 days
	7 uays
Simple UTI	3 days women 7 days men
Pyelonephritis	7 days
Cellulitis	
Septic arthritis & osteomyelitis	
Clostridium difficile	
Cholecystitis, cholangitis & peritonitis	
Sepsis & meningitis	

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Pneumonia & exacerbation of COPD	7 days
Simple UTI	3 days women 7 days men
Pyelonephritis	7 days
Cellulitis	10-14 days
Septic arthritis & osteomyelitis	
Clostridium difficile	
Cholecystitis, cholangitis & peritonitis	
Sepsis & meningitis	

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Condition	Duration of treatment
Pneumonia & exacerbation of COPD	7 days
Simple UTI	3 days women 7 days men
Pyelonephritis	7 days
Cellulitis	10-14 days
Septic arthritis & osteomyelitis	4-6 weeks
Clostridium difficile	
Cholecystitis, cholangitis & peritonitis	
Sepsis & meningitis	

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Condition	Duration of treatment
Pneumonia & exacerbation of COPD	7 days
Simple UTI	3 days women 7 days men
Pyelonephritis	7 days
Cellulitis	10-14 days
Septic arthritis & osteomyelitis	4-6 weeks
Clostridium difficile	10-14 days
Cholecystitis, cholangitis & peritonitis	
Sepsis & meningit <mark>is</mark>	
www.micro	biologynutsandbolts.co.uk

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

oonantion	Duration of treatment
Pneumonia & exacerbation of COPD	7 days
Simple UTI	3 days women 7 days men
Pyelonephritis	7 days
Cellulitis	10-14 days
Septic arthritis & osteomyelitis	4-6 weeks
Clostridium difficile	10-14 days
Cholecystitis, cholangitis & peritonitis	7 days
Sepsis & meningitis	

Duration of therapy

Remember: patients are not necessarily back to normal when antibiotics can be stopped

Pneumonia & exacerbation of COPD	7 days
Simple UTI	3 days women 7 days men
Pyelonephritis	7 days
Cellulitis	10-14 days
Septic arthritis & osteomyelitis	4-6 weeks
Clostridium difficile	10-14 days
Cholecystitis, cholangitis & peritonitis	7 days
Sepsis & meningitis	Depends on cause!

Reasons for failing antibiotics

- Has the antibiotic been given for long enough?
- Is the diagnosis correct?
- Is the antibiotic correct for the diagnosis and the common causative microorganisms?
- Does the patient have a new problem or
- secondary infection?
- Is the patient compliant with treatment?
- Is the patient actually being given the antibiotic?

www.microbiologynutsandbolts.co.uk

Reasons for failing antibiotics

- If on oral antibiotics is the patient able to swallow or absorb them?
- Is the dose appropriate?
- Is the patient on any drugs that might interact with the antibiotics?
- Does the patient have prosthetic material that needs removing?
- Does the patient have a resistant microorganism?

0

Reasons for failing antibiotics

- If on oral antibiotics is the patient able to swallow or absorb them?
- Is the dose appropriate
- Is the patient on any drugs that might interact with the antibiotics?
- Does the patient have prosthetic material that needs removing?

www.microbiologynutsandbolts.co.uk

- Does the patient have a resistant
- microorganism?

Antibiotic dosing

- Infections requiring high-dose therapy:
 Meningitis & encephalitis
 - Infective endocarditis
- Septic arthritis & osteomyelitis

Antibiotics in observing Most antibiotics discovered before 1960 Doss based on weights of 60-70kg. Current population: 66% over-weight 4% morbidly obsei

www.microbiologynutsandbolts.co.uk

Reasons for failing antibiotics

www.microbiologynutsandbolts.co.uk

- If on oral antibiotics is the patient able to swallow or absorb them?
- Is the dose appropriate?
- Is the patient on any drugs that might interact with the antibiotics?
- Does the patient have prosthetic material that needs removing?

www.microbiologynutsandbolts.co.uk

Does the patient have a resistant microorganism?

Biofilms- slime cities Types of IV Device • Peripheral Venous Catheter prosthetic material • Peripheral Arterial Catheter · Collection of multiple Short-term Central Venous Catheter (CVC) microorganisms • Peripherally Inserted Central Catheter (PICC) surrounded by • Long-term Central Venous Catheter (CVC) e.g. Broviac, Groshong, Hickman catheters glycocalyx "slime" Bacteria change Totally Implanted Catheter · Pacemaker, cardioverter defibrillator become much more IVC filters resistant to antibiotics Prosthetic vascular grafts

Ó

Intravenous catheter infections

- IV lines breach the body's main barrier to infection, the skin
- barrier to infection, the skin
 The most common causes of infection are skin bacteria e.g.
 Staphylococci
 Gram-negative bacteria are unusual and normally occur in immunosuppressed patients or those on antibiotics that cause changes in skin flora
 The main treatment of an IV line infection is to remove the line
 Essential with Staphylococcus aureus, Pseudomonas sp. and klebsiella sp.

Reasons for failing antibiotics

- If on oral antibiotics is the patient able to swallow or absorb them?
- Is the dose appropriate?
- Is the patient on any drugs that might interact with the antibiotics?
- Does the patient have prosthetic material that needs removing? mores the patient have a resistant microorganism?

www.microbiologynutsandbolts.co.uk

Microorganism	Absolute Resistance
MRSA	Beta-lactams
Enterococcus spp.	Cephalosporins Ciprofloxacin Erythromycin, Clarithromycir Azithromycin, Clindamycin
Pseudomonas spp.	 Ampicillin, Amoxicillin Cefuroxime, Cefotaxime, Ceftriaxone
Klebsiella spp.	 Ampicillin, Amoxicillin
Proteus spp.	Nitrofurantoin
Gram-negative bacilli	Teicoplanin, Vancomycin Linezolid
AmpC producing bacteria e.g. Enterobacter cloacae, Citrobacter freundil, Serratia marcescens and Morganella morganii	Ampicillin, Amoxicillin Cefuroxime, Cefotaxime, Ceftriaxone, Ceftazidime
Listeria monocytogenes	 Cefotaxime, Ceftriaxone
Non-Culturable bacteria e.g. Mycoplasma spp. and Chlamydia spp.	Beta-lactams Teicoplanin, Vancomycin
Aerobes	Metronidazole

