How Resistance Occurs - Mechanisms of Resistance

Bacteria develop mechanisms of resistance in 4 ways; these are the bacterium's survival response to the antibiotics trying to kill it. Knowledge of individual classes of antibiotics can all be fitted into these groups.

1) Production of a Protein (**A**) that Interferes Before the Action of Antibiotic

Enzymes

- Beta-lactams (e.g. ESBLs, AmpC)
- Macrolides and Lincosamides
- Aminoglycosides (e.g. aminoglycoside modifying enzymes)
- Nitroimidazoles (e.g. Catalase)
- Tetracyclines and Chloramphenicol (e.g. Acetyl transferases)

Inhibitors

- Tetracyclines (proteins knock Tetracyclines off ribosome)
- Nitrofurantoin (inhibition of activating enzyme)

2) Mutation or Change in Active Site Prevents Binding of the Antibiotic

At the Ribosome

 Macrolides, Lincosamides, Aminoglycosides, Oxazolidinones, Fusidic Acid and Chloramphenicol

At the Cell Wall

Beta-lactams and Glycopeptides

At the Chromosome

 Diaminopyramidines, Quinolones and Rifampicin

Excessive Target Site

 Diaminopyramidines and Glycopeptides

No Target Site

Colistin in Gram-positive bacteria

3) Reduced Entry of the Antibiotic into the Cell

Reduced Cell Membrane Permeability

Beta-lactams, Diaminopyramidines
and Chloramphenicol

Gram-negative Cell Membrane Blocks Entry

 Macrolides, Lincosamides, Glycopeptides and Lipopeptides

Loss of Porin

Quinolones

4) Efflux Pumps Remove the Antibiotic from the Bacterium before its Action

 Beta-lactams, Diaminopyramidines, Macrolides, Lincosamides, Aminoglycosides, Quinolones and Tetracyclines